
MATH 239 Introduction to Graph Theory

Jude Gao
University of Waterloo

2018 FALL

1

Contents

Contents 2

1 Basic Concepts 5
1.1 What is a Graph? . 5
1.2 Different Kinds of Graphs . 6
1.3 Introduction to Complexity Theory . 7
1.4 Isomorphism . 9
1.5 Basic Terminology . 10
1.6 Our First Lemma . 11

2 Fundamental Notions 13
2.1 Paths and Walks . 13
2.2 Connected Components . 15
2.3 Cut and CO− NP Characterization of Connectedness 17
2.4 Trees and Forests . 18
2.5 Spanning Subgraph . 20
2.6 Bridges . 22
2.7 CO− NP Characterization of Bipartition 23
2.8 Minimum Weight Spanning Trees . 24

3 Planar Graph 27
3.1 Planarity . 27
3.2 Euler’s Formula . 29
3.3 Kuratowski’s Theorem . 31
3.4 Graph Colouring . 33
3.5 Coloring Planar Graph . 37

4 Matchings 41
4.1 Matching . 41
4.2 Covering . 42
4.3 Connection Between Matchings and Covers 42

2

Chapter 0

4.4 Algorithm from König’s Theorem . 46
4.5 Hall’s Theorem . 47

3

Chapter 1

Basic Concepts

1.1. What is a Graph?

Definition 1.1 (Graph). A graph G is a pair (V, E) such that

• V is a set whose elements are called vertices of G, and

• E is a set whose elements are pairs of distinct vertices, those are called edges.

We will denote the vertex set as V(G) and the edge set as E(G). In Computer
Science terms, V and E are operators.

Example 1.2. Consider a graph G where

V(G) = {1, 2, 3},

and
E(G) = {{1, 2}, {2, 3}}.

1 2 3

is a drawing of G.

Definition 1.3 (Drawing). A drawing of a graph is a pictorial representation where
vertices are denoted with points and a curve connects every pair of points that
form an edge.

Remark 1.4. Note that we may use curves to connect points, not necessarily straight
lines. Also, a drawing is not necessarily 2-dimensional. Hence, we can allow edges
to “cross”. It is helpful to think of edges as string. Also, we may have different
drawings of a graph G.

5

MATH 239 Introduction to Graph Theory

1.2. Different Kinds of Graphs

Definition 1.5 (Planar Graph). A graph is planar if it can be drawn in the plane
without crossing.

Remark 1.6. We will study planar graphs in the future, but not every graph is
planar!

E(G) is a set, not a multiset. However, there is a more general concept, called
multiset, in which E(G) is a multiset and can consist of pairs and/or singletons.
There are even more generalizations of graphs, which we will not study. They are

• Weighted Graph: edges are assigned weights, usually integer or real num-
bers.

• Directed Graph: edges are ordered pairs.

• Hyper-graphs: edges can be of any size.

The goals for this course are

• to learn basic graph terminology,

• to understand basic types or classes of graphs,

• to prove structure theorems for these classes, and

• to teach you how to write a Graph Theory proof.

Example 1.7. • Complete Graphs: a family of graphs, denoted

Kn : V(Kn) = {1, 2, . . . , n}, E(Kn) = {{i, j} : i 6= j, i, j ∈ {1, . . . , n}}

Fun Fact: Kn is planar for n ≤ 4, not planar for all n ≥ 5.

• Paths: a family of graphs for each n, denoted

Pn : V(Pn) = {1, 2, . . . , n}, E(Pn) = {{1, 2}, {2, 3}, . . . , {n− 1, n}}

Fun Fact: P1 = K1, P2 = K2, P3 6= K3. Pn is planar ∀n.

• Cycles: a family of graphs for each n ≥ 3, denoted

Cn : V(Cn) = {1, . . . , n}, E(Cn) = {{1, 2}, . . . , {n− 1, n}, {1, n}}

Fun Fact: Cn is planar ∀n. Cn is also referred as an n−cycle.

6

Chapter 1

• Bipartite Graph: a graph is bipartite if there exists a partition of V(G) into
parts A and B such that for each {u, v} ∈ E(G),

|{u, v} ∩ A| = |{u, v} ∩ B| = 1.

Every edge has one end point in A and the other in B.

1.3. Introduction to Complexity Theory

To study the theorems throughout the course, we want to talk about them in the
context of decision problems with their complexities. In this section, we will intro-
duce several basic definitions in Complexity Theory with respect to the following
questions:

• It is easy to see that a graph is bipartite?

• Is it easy to see that a graph is NOT bipartite?

We will make clear what we mean by “easy” and “see” during the discussion in
Complexity Theory.

Definition 1.8 (Decision Problem). A decision problem is a problem that has a
YES or NO answer.

Example 1.9. The examples of decision problems are

• Is G planar?

• Is G bipartite?

Definition 1.10 (P). A decision problem is in P if there exists a polynomial time
algorithm to solve it.

Definition 1.11 (NP). There are two possible definitions:

• A decision problem is in NP if there exists a polynomial time algorithm in
the input to verify that a YES-solution is actually a solution.

• A decision problem is in NP if there exists a polynomial time algorithm to
decide the decision problems if you are the “luckiest possible guessers”.

Obviously, we know that P ⊂ NP, but whether P 6= NP is still a conjecture.

7

MATH 239 Introduction to Graph Theory

Definition 1.12 (NP-Complete). A decision problem is NP-complete if it being in
P implies that every NP-problems is in P.

Definition 1.13 (Co-NP). A problem is in co-NP if there exists a polynomial algo-
rithm to verify a NO-solution.

NP =co-NP is also a conjecture.
Let’s return to our questions:

• It is easy to see that a graph is bipartite?

• Is it easy to see that a graph is NOT bipartite?

Now, this can be rephrased as

• Is the Bipartite Decision Problem in NP?

• Is the Bipartite Decision Problem in co-NP?

• Is the Bipartite Decision Problem in P?

Theorem 1.14. Bipartite Decision Problem is in NP.

Proof. Given a solution, i.e. a bipartition A, B, of the graph, it is linear time, i.e.
polynomial time, to decide if it is correct: Check for edge e ∈ E(G), if one end is in
A, and the other is in B.

However, is it in co-NP?
Naively, we need to show that every bipartition has an edge with ends on the

same side. Since there are exponential number of bipartitions, we would think that
Bipartite Decision Problem was not in co-NP.

Theorem 1.15. A graph is bipartite if and only if it contains no odd cycles as a subgraph.

Definition 1.16 (Subgraph). A subgraph H of G is a graph that satisfies

• V(H) ⊂ V(G)

• E(H) ⊂ V(G)

Theorem 1.17. The Bipartite Decision Problem is in co-NP.

Proof. As a NO-solution is given as an ordered list of vertices v1, v2, . . . , vk, there
exists a polynomial time algorithm to verify, namely, to check {v1, v2},{v2, v3}, . . . , {vk−1, vk}, {vk, v1}
are connected and that k is odd.

8

Chapter 1

1.4. Isomorphism

Definition 1.18 (Isomorphism). An isomorphism from a graph G to graph H is a
bijection V(G) to V(H) that preserves edges. More formally, if f is the bijection,
then ∀u, v ∈ V(G), there exist u, v ∈ E(G) such that { f (u), f (v)} ∈ E(H).

Example 1.19.
G

1

2

3

H

a

b

c

Here is a possible isomorphism from G to H:

f (a) = 3, f (b) = 1, f (c) = 2

Check that edges are preserved:

{1, 2} ⇐⇒ {b, c}

{1, 3} ⇐⇒ {b, a}

{2, 3} ⇐⇒ {c, a}

Definition 1.20. A graph G and H are isomorphic if there exists an isomorphism
from G to H or from H to G.

We only care about properties of graphs that hold up to isomorphisms. We do
not care about labels. We are interested in whether a graph is bipartite, or planar.

In the context of Complexity Theory,

• Is it easy to see if two graphs are isomorphic?

YES, Graph Isomorphism is in NP. We check the bijections.

9

MATH 239 Introduction to Graph Theory

• Is it easy to decide if two graphs are isomorphic?

State-of-the-art: Graph Isomorphism is either not known to be in P, or to be
in NP-complete.

However, (2015) there exists a quasi-polynomial time algorithm (2polylog(|V(G)|))
.

1.5. Basic Terminology

Definition 1.21 (Adjacent). We say two vertices u, v are adjacent if {u, v} ∈ E(G).

Definition 1.22 (Neighbour). We say an edge u is a neighbour of an edge v, if
{u, v} ∈ E(G).

Definition 1.23 (Neighbourhood). The neighbourhood of an edge v, denoted N(v)
is the set of neighbours of v.

Definition 1.24 (Degree). The degree of a vertex v, denoted deg(v), is the number
of neighbours of v

deg(v) = |N(v)|.

Definition 1.25. We say a vertex v and an edge e are incident, written e ∼ v, if
v ∈ e.

Definition 1.26. We say two edges b, f are incident, if there exists a vertex v such
that v ∼ e, v ∼ f .

If two graphs G, H are isomorphic,

N(v)↔ N(f (v)), degG(v) = degH(f (v)).

Definition 1.27 (k-regular). A graph G is k-regular, if every vertex has degree k.

Example 1.28. • Peterson is 3-regular.

• Kn is n− 1-regular.

• Cn is 2-regular.

Definition 1.29. A graph is regular if it is k-regular for some k.

Example 1.30. Pn is not regular for n ≥ 3.

10

Chapter 1

1.6. Our First Lemma

Lemma 1.31 (Handshaking Lemma). If G is a graph, then

2|E(G)| = ∑
v∈V(G)

deg(v).

Proof.

2|E(G)| = ∑
e∈E(G)

2

= ∑
e∈E(G)

∑
v∈V(G)

v∼e

1

= ∑
v∈V(G)

∑
e∈E(G)

e∼v

1

= ∑
v∈V(G)

deg(v)

Corollary 1.32. The average degree of a graph G is

2|E(G)|
|V(G)| .

Proof.

Average Degree =
∑ deg(v)
|V(G)| =

2|E(G)|
|V(G)| .

Corollary 1.33. If G is k-degree, then

|E(G)| = k|V(E)|
2

.

Proof. The average degree of any k-degree graph is, clearly, k. By the theorem
above,

Average Degree = k =
2|E(G)|
|V(G)| =⇒ |E(G)| = k|V(E)|

2
.

Example 1.34. • Peterson has (3)(10)
2 = 15 edges, since |V(G)| = 10 and it is

3-regular.

11

MATH 239 Introduction to Graph Theory

• |E(Kn)| = (n−1)n
2 = (n

2), since Kn are (n− 1)-regular.

Corollary 1.35. The number of vertices in G that have odd degree is even.

Proof. 2|E(G)| is even. By the Handshaking Lemma,

2|E(G)| = ∑
v∈G

deg(v),

and hence latter is even.
Let

OG = {v ∈ V(G) : deg(V)is odd}

and
EG = {v ∈ V(G) : deg(v)is even}.

OG and EG partition V(G).
Hence,

∑
v∈V(G)

deg(v)︸ ︷︷ ︸
even

= ∑
v∈OG

deg(v)︸ ︷︷ ︸
even

+ ∑
v∈EG

deg(v)︸ ︷︷ ︸
even

12

Chapter 2

Fundamental Notions

2.1. Paths and Walks

Definition 2.1 (Walk). A walk W in a graph G is an alternating sequence of vertices
and edges

v0e1v1e2v2 · · · ek−1vk−1ekvk

such that
ei = vi−1vi ∀i, 1 ≤ i ≤ k

Example 2.2. An example of a walk:

W = 1, 12, 2, 23, 3, 31, 1, 13, 3, 34, 3

The vi need not be distinct. The length of the walks is the number of edges. The
example above is a walk with length 5.

Definition 2.3 (Path). A path in a graph G is a walk W where all vertices are dis-
tinct.

Again, the length of a path is the number of edges.

Definition 2.4 (v0vn-walk). We say W = v0 · · · vn is a v0vn-walk.

If we reverse the sequence in W, we get a vnv0-walk. Hence we often talk of
there existing a walk between v0 and vk, not caring about the direction.

Definition 2.5 (Closed Walk). We call a walk closed if v0 = vk.

The closed walk has the start and the end the same vertex. There can be a
path/walk of length 0, namely one vertex v, no edges.

We are interested in answering the following question:

13

MATH 239 Introduction to Graph Theory

When does there exist a path/walk from vertex x to vertex y?
Of course, if there exists a path from x to y, then there exists a walk from x to y,

namely the path itself. However, the converse is also true.

Theorem 2.6. If there exists a walk from vertex x to vertex y in a graph G, then there
exists a path from x to y in G.

Proof. Idea: if a walk is not a path, shorten it.
First Proof: Proof by algorithm. Algorithm to turn a walk w = v0 · · · vk with

v0 = x and vk = y into a path from x to y.
while (∃i < j such that vi = vj)

W = v0 . . . vivj+1 . . . vk
return W
You are not done yet! This is not a proof. We still have to

• Prove correctness.

• Prove algorithm terminates.

Proof of correctness:

• It returns a path since the while-loop failed to execute, when @i < j such that
vi = vj.

• The start is x and the end is y, because W always preserves this property.

Proof of termination: In every execution of the loop, the length of W decreases.
The length is finite, so the algorithm terminates.

Proof. Second Proof: Proof by the Minimum Counterexample. Idea: suppose exis-
tence of counterexample minimum with respect to some parameter(s). Then, de-
rive contradiction. Given an algorithmic proof or idea, construct a minimum coun-
terexample proof by ‘skipping to the end’.

Suppose not. Let W = v0 · · · vn be a walk with v0 = x, . . . , vn = y, and, subject
to that, W has minimum length. W exists because

• ∃ a walk from x to y by assumption.

• The length of walks is finite in G, since G is finite.

Since W is not a path, @ a path from x to y. Then ∃i < j such that vi = vj. We have
w = v0 · · · vivjvj+1 · · · vk. But now we shorten it to

w = v0 · · · vivj+1 · · · vk.

This is a shorter length from x to y of shorter length than W, a contradiction.

14

Chapter 2

Corollary 2.7. If there exists a path from x to y, and a path from y to z in a graph G, then
there exists a path from x to z.

Proof. Let P1 be a path from x to y and P2 be a path from y to z.
Now P1P2, the sequence formed by concatenation, is a walk from x to z. This

might not be path because vertices may repeat. Hence there exists a walk from x
to z by the theorem above, then there exists a path from x to z.

2.2. Connected Components

Definition 2.8. A graph G is connected if ∀x, y ∈ V(G), ∃ a path from x to y in G.

Question: Is deciding if a graph connected in NP? Co-NP? P?

Theorem 2.9. The Deciding Connectedness is in NP.

Proof. The prover provides a verifier with a path from x to y, ∀x, y ∈ V(G). It is
O(V(G)) for the verifier to check each part is a path from x to y. Since there are
|V(G)|2 paths given in total, this is O(|V(G)|3| time.

Question: How to show it’s in co-NP?
Suffice to examine that ∃x, y ∈ V(G) and no path from x to y. How to verify no

path? We would need to show all paths but there are maybe exponentially many
paths in G, so it is not efficient.

Definition 2.10 (Equivalence Relation). A relation ∼R on a set S is an equivalence
relation if all the following hold:

• ∀x ∈ S, x ∼R x. (Reflexive)

• ∀x, y ∈ S, x ∼R Y =⇒ Y ∼R X. (Symmetric)

• ∀x, y, z ∈ S, x ∼R y, y ∼R z =⇒ x ∼R z. (Transitive)

Definition 2.11 (Equivalence Class). An equivalence class under ∼R is a maximal
subset of S whose elements are all pair-wise related.

The equivalence class under ∼R containing x ∈ S is

{y ∈ S : x ∼R y}.

Lemma 2.12. If∼R is an equivalence relation, then S partitions into equivalence classes.

15

MATH 239 Introduction to Graph Theory

Definition 2.13 (Path Relation). Let G be a graph. We define a relation ∼Path on
V(G) as follows:

∀x, y ∈ V(G), x ∼Path y ⇐⇒ ∃ a path x to y in G.

Lemma 2.14. If G is a graph, then ∼Path is a equivalence relation on V(G).

Proof. It suffices to check three properites:

• Reflexive: ∀x ∈ V(G), ∃ a path from x to x, because x is itself a path from x
to x.

• Symmetric: ∀x, y ∈ G, ∃ a path from x to y, then ∃ a path from y to x, because
we can reverse the path.

• Transitive: ∀x, y, z ∈ V(G), ∃ a path from x to y, a path from y to z, then ∃ a
path from x to z. (By the Theorem)

Definition 2.15 (Component). An equivalence classes under ∼Path in a graph G
is called a component of G. Similarly, a vertex v ∈ V(G), then equivalence class
under ∼Path containing vertex v is called the component of G containing v.

Corollary 2.16. Our earlier proposition about equivalence relation gives the following: If
G is a graph, then V(G) partitions into its components.

Theorem 2.17. A graph G is connected iff V(G) is a component, or equivalently, G is
disconneted iff G has at least 2 components.

16

Chapter 2

2.3. Cut and CO− NP Characterization of
Connectedness

Definition 2.18 (Cut). Let G be a graph, and X ⊂ V(G). The (edge) cut induced by
X, denoted δ(X) = {e = xy ∈ E(G) : x ∈ X, y 6∈ X}. (I.e. the list of edges exactly
one ending X)

Lemma 2.19. δ(X) 6= ∅ iff ∃ a component C of a graph G such that C ∩ X 6= ∅ and
C ∩ (V(G)− X) 6= ∅.

Proof. Assume δ(X) 6= ∅. In particular, ∃e = xy ∈ δ(X) and x ∈ X, y 6∈ X. Let
C be the component containing x. Since xy itself is a path, we have y ∈ C. Hence
x ∈ C ∩ X, and y ∈ C ∩ (V(G)− X), as desired.

Assume ∃ a component C such that C ∩ X 6= ∅, and C ∩ (V(G)− X) = ∅. Let
x ∈ C ∩ X and y ∈ C ∩ (V(G) − X). Since C is a component, and x, y ∈ C, ∃ a
path P = v0v1 · · · vk in C such that v0 = x, vk = y. Let i be maximum such that
vi ∈ X. This exists because v0 = x ∈ X. However i < k since vk = y 6∈ X. Then,
vivi+1 ∈ δ(X).

Corollary 2.20. Let G be a graph, X ⊂ V(G). Then δ(X) = ∅ iff ∃ components
C1, C2, . . . , Ck of G such that X = C1 ∪ C2 ∪ · · · ∪ Ck

Corollary 2.21. Let G be a graph. G is connected iff ∃X (V(G), X 6= ∅ such that
δ(X) 6= ∅. G is disconnected iff ∃X (V(G), X 6= ∅ such that δ(X) = ∅.

Theorem 2.22. Deciding if a graph is connected is in co-NP.

Proof. The prover gives the verifier a set X (V(G), X 6= ∅, such that δ(X) = ∅.
Then, the verifier checks this.

17

MATH 239 Introduction to Graph Theory

2.4. Trees and Forests

Definition 2.23 (Forest). A graph G is a forest if G does NOT contain a cycle as a
subgraph.

Definition 2.24 (Tree). A connected forest is called a tree.

Lemma 2.25. Every component of a forest is a tree.

Proof. Every component has no cycles, since the forest does not. Also, component
is connected. Hence every component of a forest is a tree.

Do remember that every tree is a forest but not every forest is a tree.
Question: Is deciding if a graph is a forest in NP? Co-NP? P?
The answers are all yes, but one is obvious.

Theorem 2.26. Deciding if a graph is a forest is in co-NP.

Proof. The prover gives a verifier a cycle.

How to show it is in NP? How to show that there is no cycle?

Theorem 2.27. Deciding if a graph is a tree is in co-NP.

Proof. A graph is not a tree means that it is not a forest or it is disconnected.
To show that it is not a forest, we show it has a cycle.
To show that it is disconnected, we show ∃X (V(E), X 6= ∅, δ(X) = ∅.

Definition 2.28 (Leaf). Let G be a graph. A leaf in G is a vertex of degree exactly 1.

A graph with one vertex is a tree, but has no leaves.

Lemma 2.29. Let G be a graph. At least one of the following holds:

• deg(v0) = 1

• ∃ a neighbour w not in P.

• G has a cycle.

Theorem 2.30. If T is a tree on ≥ 2 vertices, then T has a leaf.

Proof. Let P be the longest path in T = v0v1 . . . vk. By the theorem above, we con-
sider

• if deg(v0) = 1, then v0 is a leaf.

18

Chapter 2

• if ∃ a neighbour w not in P, then Q = wv0v1 · · · vk is a longer path than P,
contradicting to the choice of P.

• ‘G has a cycle’ cannot hold, since T is a tree.

Actually if T is a tree on ≥ 2 vertices, then T has at least 2 leaves, because
we can apply the same theorem on vk as well. Therefore, v0, vk are leaves. More
importantly, we need to show that v0 6= vk. Since T is connected and |V(T)| ≥ 2, T
has an edge. v0 6= vk, since k ≥ 1.

Theorem 2.31. If T is a tree and v is a leaf of T, then T − v is a tree.

Proof. It suffices to prove

• T − v is a forest, and

• T − v is connected.

Proof that T − v is a forest: T− v is a forest since it is a subgraph of T which has no
cycles.

Proof that T − v is connected: Let x, y ∈ V(T − v). Since T is connected, ∃ a
path v0v1 · · · vk such that v0 = x, vk = y. Note v 6= x, y since x, y ∈ V(T − v).
Moreover, v 6= vi for any 1 ≤ i ≤ k− 1, since deg(vi) ≥ 2, and deg(v0) = 1. Hence
v 6∈ V(P). This P is a path in T − v from x to y. Since x, y are arbitrary, T − v is
connected.

Theorem 2.32. T is a tree iff ∃ an ordering on n vertices v1, v2, . . . , vn of V(T) such that
∀2 ≤ i ≤ n, vi is a leaf on G[{v1, . . . , vi}], that is a graph induced by v1, . . . , vi.

Proof. By induction on |V(T)|. If |V(T)| = 1, this is trivial. So we may assume
|V(T)| ≥ 2. By lemma, T has a leaf, call it v|V(T)|. By lemma, T′ = T − v|V(T)| is
a tree. Hence, by induction ∃ an ordering v1, . . . , v|V(T′)| such that ∀vi is a leaf in
G[{v1, . . . , vi}] ∀2 ≤ i ≤ |V(T)|. But now, v1, v2, . . . , v|V(T′)|, v|V(T)| is the desired
ordering.

By induction on |V(T)|. If |V(T)| = 1, then T is a tree, as desired. So we may
assume |V(T)| ≥ 2. Let T′ = T − v|V(T)|. Now v1, . . . , v|V(G)|−1 is an ordering of
V(T′). By induction, T′ is a tree.

Now claim that

1. T is a forest, and

2. T T is connected.

19

MATH 239 Introduction to Graph Theory

Proof that T is a forest, that is, T does not have a cycle.
Suppose not, that is, ∃ a cycle C in T. Since T′ is a tree, meaning no cycle. It

implies that V(C)−V(T′) 6= ∅. But V(T)−V(T′) = {v|V(T)|} and hence v|V(T)| ∈
V(C). Yet then deg(v|V(T)|) ≥ 2 contradicting that deg(v|V(T)|) = 1.

Proof that T is connected.
Let w ∈ N(v|V(T)|). Since T′ is a tree, V(T′) are all in one component of T, yet

since v|V(T)| ∈ E(T), we have that w is in the same component as v|V(T)|. Hence all
of V(T) is in one component, and T is connected.

Theorem 2.33. Deciding if a graph is a tree is in NP.

Proof. The prover provides such ordering, and the verifer checks each deg vi =
1.

Lemma 2.34. If T is a tree, then |E(T)| = |V(T)| − 1.

Proof. Proof by induction on |V(T)|. If |V(T)| = 1, then |E(T)| = 0 = 1− 1 =
(V(T)− 1), as desired. We may assume that |V(T)| ≥ 2. By lemma, T has a leaf v.
By other lemma, T′ = T− v is a tree. By induction, |E(T′)| = |V(T′)| − 1. Note that
|V(T)| = |V(T′)| + 1, since V(T)− V(T′) = {v}. Since v is a leaf, N(v) = {w},
hence E(T)− E(T′) = {vw}, |E(T)| = |E(T′)|+ 1. Hence, |E(T)| = |E(T′)|+ 1 =
|V(T′)| − 1 + 1 = |V(T)| − 1.

Corollary 2.35. If T is a tree, then

∑
v∈V(T)

deg(v) = 2|E(T)| = 2|V(T)| − 2

Proof. It follows directly from the Handshaking Lemma, and the theorem above.

2.5. Spanning Subgraph

Definition 2.36. A subgraph H of a graph G is spanning in G if V(H) = V(G).

A nice object to study is a spanning tree of a graph, that is a tree and spanning.
Question: When does a graph have a spanning tree?

Lemma 2.37. If a graph G has a spanning tree, then G is connected.

Proof. ∀x, y ∈ V(G), x, y ∈ V(T) because T is a spanning tree, but then ∃ a path P
in T from x to y. Since T is connected, P is a path in G. Hence G is connected.

20

Chapter 2

The converse is also true!

Lemma 2.38. If G is connected, then G has a spanning tree.

Proof. Idea: If not a tree, then ∃ a cycle, delete edge in C and iterate.
Proof by minimality:
Let H be a spanning, connected subgraph, such that |E(H)| is minimized. Note

that such H exists because

1. it can be minimized because the graph is finite

2. G itself is a connected subgraph of G. Hence set of such subgraph is non-
empty.

Claim: H has no cycle.
Suppose not, that is, ∃ a cycle C in H. Let e ∈ E(C), H′ = H − e. Note that

V(H′) = V(H) = V(G), and hence H′ is a spanning subgraph of G, with smaller
number of edges, contradicting the choice of H.

Subclaim: H′ is connected. Let x, y ∈ V(H′). Since H is connected, ∃ a path H
from x to y in H. If e 6∈ E(P), then P is a path, as desired. So we may assume
e ∈ E(P), but then P = P1eP2. But now P1, C − e, P2, then is a walk from x to y in
H. But then ∃ a path from x to y in H′ so H′ is connected.

21

MATH 239 Introduction to Graph Theory

2.6. Bridges

Definition 2.39 (Bridges). An edge e in a graph G is a bridge if G − e has strictly
more components than G.

Question: Deciding if an edge is a bridge is in NP? Co-NP? Or P?
It is in NP, we only need partition into components and for each component, we

need the paths or the spanning trees. The verifier verifies that the cuts are empty,
i.e. components connected, paths are valid paths to show that the number of com-
ponents in NP. Put simply, deciding the number of components is in NP.

How about Co-NP? Is it easy to see that an edge is not a bridge?

Theorem 2.40. e is a bridge of a graph G iff e is not in a cycle of G.

Proof. Show that if e is a bridge, then e is not in a cycle.
Suppose not, that is, e is a bridge and still in a cycle C of G.
Since e is a bridge, by definition of bridges, G− e has more components than G.
Let C1 be the component of G− e but not in G. C1 exists since G− e has more components.
Since C1 is a component of G− e, we have that

δG−e(C1) = ∅.

However, since C1 is not a component of G, it follows that

δG(C1) = {e}. (Why?)

Let x, y be the ends of e such that, WLOG, x ∈ C1 and y 6∈ C1.
It turns out that C− e is a path P from x to y in G− e. (Note C is that cycle we

assumed at the beginning!) Hence x and y are in the same component of G− e. A
contradiction.

Show that if e is not in a cycle, then e is a bridge.
Let’s show contrapositive, that is, if e is not a bridge, then e is in a cycle.
Let e = xy. Since e is not a bridge, G − e has the same number of components

as G.
Let C be the component of G containing e.
From the above, C is a component of G− e. Since x, y ∈ C, ∃ a path P from x to

y in G− e.
P + e is a cycle containing the edge e, as desired.

Theorem 2.41. Deciding if e is a bridge is in co-NP.

Proof. The prover gives the verifier a cycle containing e and the verifier verifies
it.

22

Chapter 2

Lemma 2.42. If G is a forest, then every edge is a bridge.

Actually, the converse is also true.

2.7. CO− NP Characterization of Bipartition

Recall that we have seen the following theorem, but this time we prove it!

Theorem 2.43. A graph G is bipartite, iff G has no odd cycles.

Proof. Show that if G is bipartite, then G has no odd cycles.
Suppose not, that is, ∃ a cycle C = v0v1 . . . vkv0 of G such that k is even. (Note

that for an odd cycle, we need k to be even instead of odd.)
Suppose G is bipartite, that is, ∃ a bipartition A, B such that ∀e = xy, x ∈ A, y ∈

B.
More generally, we find that, vi ∈ A if i is even; vi ∈ B if i is odd.
By considering the edges vivi+1∀i, then v0 ∈ A and vk ∈ A. Thus, v0vk is an

edge with both ends in A.
Show that if G has no odd cycles, then G is bipartite.
By induction on |V(G)|.
If G is disconnected, by induction, each component C is bipartite.
That is ∃ a bipartition Ai, Bi of Ci such that ∀e ∈ E(Ci) has one end in Ai and

the other in Bi. Then, A = A1 ∪ A2 ∪ · · · and B = B1 ∪ B2 ∪ · · · .
If G is connected, then G has a spanning tree.
Let vi ∈ V(T). Partition V(T) into

Si := {v ∈ V(T) : D(v, v0) = i}.

Claim: ∀e = xy ∈ E(G), e has one end in A, other in B
Suppose not, that is, x and y are either both in A, or both in B.
We may assume, WLOG, x, y ∈ A. (The case B is symmetric)
Since x, y ∈ V(G) and T is connected, ∃ a path P = v0 . . . vk in T such that

v0 = x, vk = y.
However, every edge in T has one end in A and the other in B.
Since v0v1 ∈ E(T), v0 ∈ A =⇒ v1 ∈ B, inductively, we find that since

vivi+1 ∈ E(T), ∀0 ≤ i ≤ k− 1, it follows that vi ∈ A if i even, vi ∈ B if i odd.
Then C = v0v1 . . . vkv0 ia an odd cycle in G since y = vk ∈ A. Hence k is even.

Hence the cycle is odd. A contradiction.

23

MATH 239 Introduction to Graph Theory

2.8. Minimum Weight Spanning Trees

There are two nice lemmas about how to change a spanning tree to a similar but a
different spanning tree.

Theorem 2.44 (‘Add and delete edge in cycle’). Let G be a connected graph, and T be
its spanning tree.

If e ∈ E(G)− E(T), then ∃ a unique cycle Ce in T + e.
Moreover, ∀ f ∈ E(Ce), T + e− f is a spanning tree of G.

Proof. First statement:
Let e = xy.
Since T is connected, ∃ a path P = v0 . . . vk such that v0 = x, vk = y in T.

Moreover, that path is unique. (see course notes)
Therefore, C = v0 . . . vkv0 is a cycle in T + e.
Let C′ be any cycle in T + e. Then, C′ contains e, since T is acyclic.
However, C′− e is a path P′ between x and y. Since that path is unique, we find

that P′ = P. Hence, C′ = C.
This proves the first part of the statement.
Second statement:
Let f ∈ E(Ce), and T′ = T + e− f . T′ is spanning in G, since V(T′) = V(T) =

V(G).
Claim 1: T′ is acyclic.
Suppose not, that is, ∃ a cycle C′′ in T′, since T′ = T + e− f ⊂ T + e. We have

that C′′ is a cycle in T + e.
By previous statement, C′′ = Ce, since Ce is the unique cycle in T + e.
However, f ∈ E(Ce) and f 6∈ E(T′). Hence a contradiction.
Claim 2: T′ is connected.
Note T + e is connected, and thus has one component.
Since f ∈ Ce, a cycle T + e. By theorem, f is not a bridge of T + e.
Hence T + e − f has the same number of components as T + e. Thus T′ =

T + e− f has 1 component. Thus T′ is a spanning tree of G.

Theorem 2.45 (‘Delete edge, add edge in cut’). Let G be a graph and T be a spanning
tree of G. If e ∈ E(T), then ∃!(up to complement)X ⊂ V(T) such that e ∈ δT(X), ∀ f ∈
δG(X), T − e + f is a spanning tree of G.

Let G be a connected graph. Let w be a non-negative integer weight function
on the edges of G.

24

Chapter 2

Problem. Find a spanning tree of G whose total weight is minimized. This tree
we are trying to find is called the minimum weight spanning tree, denoted as MST.

Question. How do we find MST efficiently?
Answer. This is not a decision problem such as is the MST having weight at

most k? but an optimization problem. It usually asks for an instance. Nevertheless,
the answer is YES.

Theorem 2.46 (Prim’s Algorithm). Initiate a tree T by starting with an arbitrary vertex
v.

WHILE T is not a spanning tree.

• Choose an edge e in δG(V(T)) of minimum weight in the cuts.

• Let T := T + e′.

RETURN T.

Proof. It is clear that Prim’s outputs a spanning tree.
Proof that the output from Prim’s is the MST.
Suppose not, that is, there exists a spanning tree with weight strictly smaller

than the weight of the tree outputted by Prim’s. Let’s call the tree outputted by
Prim’s T.

Claim. ∀ 1 ≤ i ≤ |V(G)|, ∃ a MST Ti such that v1, v2, . . . , vi ∈ V(Ti) and all
edges from E(T), where v1, v2, . . . , v|V(G)| is the ordering from Prim’s.

Proof of Claim. By induction on i.

• When i = 1, there are no edges to agree on, so any MST agrees as desired.

• We may assume that ∃ a Ti such that e1, e2, . . . , ei−1 ∈ E(Ti) ∩ E(T). We have
to prove that ∃ Ti+1 such that e1, . . . , ei ∈ E(Ti+1) ∩ E(T). If ei ∈ E(Ti), then
Ti+1 = Ti, which satisfies the claim.

• We may assume that ei 6∈ E(Ti). Set Ti+1 = Ti − e + ei. Note w(Ti+1) ≤ w(Ti)
and hence Ti+1 is MST. Yet e1, . . . , ei ∈ E(Ti+1) as desired.

However the claim with i = |V(G)| says ∃ an MST T|V(G)| = T, i.e., T is an
MST.

25

Chapter 3

Planar Graph

3.1. Planarity

Definition 3.1 (Arc). An arc is a piece-wise linear segment with a finite number of
pieces.

Definition 3.2 (Plane Embedding). A plane embedding of a graph G is a map from
V(G) to distinct points in R2 and from E(G) to internally disjoint arcs between the
points corresponding to the ends of the edge.

Definition 3.3 (Plane Graph). A plane graph is a graph that has a plane embed-
ding.

Definition 3.4 (Planar Graph). A planar graph is a graph that has a plane embed-
ding. (No particular one specified.)

Definition 3.5 (Face). If G is a plane graph, then a face of G is a connected region
of R2 − (V(G) ∪ E(G)).

Definition 3.6 (Boundary of Face). The boundary of a face is the boundary topo-
logically of the region. (i.e. vertices incident with the face)

The boundaries naturally divide into connected components. Moreover, each
component of the boundary has a boundary walk.

A boundary walk is not necessarily a cycle, because an edge or vertex may
appear twice in a boundary walk. A face may have more than one boundary com-
ponents.

Definition 3.7 (Degree of Face). The degree of a face is the sum of the boundary
walks of each boundary components of the face.

Hence, an edge appearing twice in a walk counts twice in the degree.

27

MATH 239 Introduction to Graph Theory

Lemma 3.8 (Faceshaking Lemma). If G is a planar graph, then

2|E(G)| = ∑
f∈F(G)

deg(f)

where F(G) is the set of faces and deg(f) denotes the degree of face f .

Definition 3.9 (Dual). If G is a plane graph, then the dual of G, denoted as G∗, is
the multi-graph where V(G∗) = F(G) and E(G∗) is defined by: ∀e ∈ E(G), putting
an edge e∗ between the two faces incident with e. (i.e. its left and right face)

We do this, even if the two faces are infact incident with the same face, in which
case e∗ is a loop.

Example 3.10. The dual of K4 is itself.

Lemma 3.11. If G is a planar graph, G∗ is a planar graph and, in fact, a plane graph if we
force e and e∗ to intersect, ∀e.

Theorem 3.12. Let G be a plane graph. An edge e of G is incident with only one face iff
e∗ is a loop, iff e is a bridge.

Proof. The first “iff” follows by definition. The second “iff” is proven as follows:
‘ =⇒ ’: we prove the contrapositive. Assume e is not a bridge. By Bridge-Cycle

Lemma, e is ain a cycle C.
Note R2 − C is disconnected and the left and right faces of e live in different

regions of R−C. The face for general curves are called the Jordan Curve Theorem.
Hence e is incident with two faces as desired.
‘⇐= ’: If e∗ is a loop, then R2− e∗ has two regions. Let e = xy. The component

containing x will live in one region and the component containing y will live in the
other.

Theorem 3.13.
F(G∗)↔ V(G)

E(G∗)↔ E(G)

V(G∗)↔ F(G)

(G∗)∗ ↔ G

28

Chapter 3

3.2. Euler’s Formula

Theorem 3.14 (Euler’s Formula). If G is a planar graph, then

|V(G)| − |E(G)|+ |F(G)| = 1 + c(G)

where c is the number of components in G.

Proof. By induction on |E(G)|.
Base Case: |E(G)| = 0. Here |F(G)| = 1. Yet, c(G) = |V(G)|. Thus,

|V(G)| − |E(G)|+ |F(G)| = |V(G)| − 0 + 1

= 1 + |V(G)|
= 1 + c(G)

Inductive Step: We may assume |E(G)| 6= 0. Let e ∈ E(G). Let G′ = G− e. G′ is
planar graph. Moreover, check the condition for induction:

|E(G′)| = |E(G)| − 1 < |E(G)|

By induction,

|V(G′)| − |E(G′)|+ |F(G′)| = 1 + c(G′)

Note that |V(G)| = |V(G′)|. Now, discuss whether e is a bridge or not.

• If e is a bridge, by definition of bridge,

c(G′) = c(G− e) = 1 + c(G)

By Bridge-Face Theorem, e is incident with exactly one face,

|F(G′)| = |F(G)|

|V(G′)| − |E(G′)|+ |F(G′)| = 1 + c(G′)
=⇒ |V(G)| − (|E(G)| − 1) + |F(G)| = 1 + (1 + c(G))

=⇒ |V(G)| − |E(G)|+ 1 + |F(G)| = 1 + 1 + c(G)

=⇒ |V(G)| − |E(G)|+ |F(G)| = 1 + c(G)

• If e is not a bridge, c(G) = c(G′). By Bridge-Face Theorem, e is incident
with 2 distinct faces, f1 and f2. In G′, f1 and f2 merge into one face. Thus,
|F(G′)| = |F(G)| − 1.

|V(G′)| − |E(G′)|+ |F(G′)| = 1 + c(G′)
=⇒ |V(G)| − (|E(G)− 1) + (|F(G)| − 1) = 1 + c(G′)

=⇒ |V(G)| − |E(G)|+ |F(G)| = 1 + c(G)

29

MATH 239 Introduction to Graph Theory

Corollary 3.15. If G is a connected planar graph, then

|V(G)| − |E(G)|+ |F(G)| = 2

Theorem 3.16 (Edge Number Upperbound). If G is a plane graph and |V(G)| ≥ 3,
then

|E(G)| ≤ 3|V(G)| − 6

Proof. Now we only consider G connected. Since |V(G)| ≥ 3, |E(G)| ≥ 2. By
Euler’s formula

|V(G)| − |E(G)|+ |F(G)| = 2

By Faceshaking Lemma,

2|E(G)| = ∑
f∈F(G)

deg(f)

Claim 1: If |V(G)| ≥ 3 and G is connected, then ∀ f (G), deg(f) ≥ 3.

Proof. If the boundary walk of f contains a cycle C,

deg(f) ≥ E(C) ≥ 3, ∀ f ∈ F(G)

If the boundary walk contains no cycle, the graph G is a tree. Here, |F(G)| = 1.
By Euler’s Formula, since |V(G)| ≥ 3

|E(G)| = |V(G)|+ |F(G)| = |V(G)| − 1 ≥ 2

By Faceshaking Lemma,

deg(f) = 2|E(G)| ≥ 4

Combining two cases where deg(f) ≥ 4 and deg(f) ≥ 3, we can safely con-
clude that deg(f) ≥ 3.

By Claim 1, 2|E(G)| = ∑ f∈F(G) deg(f) ≥ 3|F(G)| =⇒ |F(G)| ≤ 2
3 |E(G)|.

By Euler’s Formula,

|V(G)| − |E(G)|+ |F(G)| = 2 =⇒ |E(G)| = |V(G)|+ |F(G)| − 2

≥ 3 + |F(G)| − 2

= |F(G)|+ 1

30

Chapter 3

2 = |V(G)| − |E(G)|+ |F(G)| ≤ |V(G)| − |E(G)|+ 2
3
|E(G)|

|V(G)| − 1
3
≥ 2 =⇒ |E(G)| ≤ 3|V(G)| − 6

Theorem 3.17 (Existence of Degree at most 5). If G is a plane graph and |V(G)| ≥ 3,
the average degree of vertices < 6. (At least one vertex has degree < 6)

Proof. If G is a plane graph and |V(G)| ≥ 3, then

2|E(G)| ≤ 6|V(G)| − 12

Hence, by Handshaking Lemma, the average degree of vertices < 6. (For all plane
G)

Theorem 3.18 (Tighter Edge Number Upperbound). If G is a plane graph, and every
face has degree ≥ 4, then

|E(G)| ≤ 2|V(G)| − 4

Proof. By Euler’s Formula, |V(G)|− |E(G)|+ |F(G)| ≥ 2. By Faceshaking Lemma,2|E(G)| =
∑ f∈F(G) deg(f). Since every face has degree ≥ 4, then ∑ f∈F(G) deg(f) ≥ 4|F(G)|.
Hence |F(G)| ≤ |E(G)|

2 . Plug into Euler’s Formula, we get 2 ≤ |V(G)| − |E(G)|+
|F(G)| ≤ |V(G)| − |E(G)|+ |E(G)|

2 = |V(G)| − |E(G)|
2 . Then, this implies |E(G)|

2 ≤
|V(G)| − 2. Finally, |E(G)| ≤ 2|V(G)| − 4.

Theorem 3.19 (Edge Bound for Bipartite Graph). If G is a bipartite planar graph and
|V(G)| ≥ 3, then

|E(G)| ≤ 2|V(G)| − 4

3.3. Kuratowski’s Theorem

Big Question: which graphs are not planar?

Example 3.20. K5 is not planar. (Indeed, Kn for any n ≥ 5.)

Proof. |V(K5)| = 5, |E(K5)| = 10. If K5 is planar, then by Edge Number Upper-
bound, |E(K5)| ≤ 3|V(K5)| − 6 = 9, which contradicts to |E(K5)| = 10.

Definition 3.21 (Km,n complete bipartite graph). G has a bipartition A, B, where
|A| = m, |B| = n, and all edges are in between.

31

MATH 239 Introduction to Graph Theory

Example 3.22. K3,3 is not planar. (Km,n for any m, n ≥ 3)

Proof. If K3,3 is planar and K3,3 is bipartite with |K3,3| ≥ 3, |E(K3,3)| ≤ 2|V(K3,3)| −
4 = 8.

Lemma 3.23. If G is a planar graph, and H is a subgraph of G, then H is planar.

Proof. Take the plane embedding of G. Delete down to H to get a plane embedding
of H.

K5 and K3,3 are minimally non-planar in that ∀ proper subgraph of each is pla-
nar.

Actually there are infinitely many minimal non-planar graphs.

Definition 3.24 (Subdivide). Let G be a graph and e ∈ E(G) = xy. We can create a
new graph G′ by “sub-dividing” e as follows:

V(G′) = V(G) ∪ {z}

a new vertex not in |V(G)|.

E(G′) = (E(G)− {e}) ∪ {xy, yz}

We can repeatedly apply this operation to subdivide an edge into a path. We
can also do this to different edges as well. Replacing edges of original with new
edge-disjoint paths.

Definition 3.25 (Subdivision). Let G be a graph. We say H is a subdivision of H
if H can be obtained from G by the use of the sub-division algorithm possibly
repeatedly.

Lemma 3.26. Let H be a subdivision on G. Then G is a planar iff H is planar.

Proof. “ =⇒ ”: We assume G is planar. It suffices to prove that subdividing edge
preserves planarity. Pick a point z on the arc e and add z there.

“⇐= ”: Assume it is planar. It suffices to prove that reversing one subdivision
operation preserves planarity. i.e. If we subdivided e = xy into xz, yz, show reverse
if planar. Let G − e + {xz, yz} be embedded in the plane. Let A1 be the arc for xz
and A2 be an arc for zy. Now we embed G as for H, except we don’t embed z or
xz, yz, instead we embed e into A1A2 which is still an arc.

Note the negation: G is non-planar iff all subdivisions of G are non-planar.
Hence every subdivision of K5 is non-planar. Remark: actually each is minimal.

32

Chapter 3

Theorem 3.27 (Kuratowski’s Theorem). A graph G is planar if and only if G does not
contain a subgraph that is a subdivision of K5, or a subdivision of K3,3.

Question: is it easy to verify that a graph is (not)planar?
Question: is deciding if a graph is planar in NP? co-NP? P? For all: Yes.
To prove an embedding, it will suffice to prove a combinatorial embedding,

which is just all of the boundaries of each face.

Theorem 3.28. Deciding if a graph is planar is in NP.

Proof. The prover gives a combinatorial embedding. The verifier verifies that every
edge appears exactly twice and walks are walks and that Euler’s holds.

Theorem 3.29. Deciding if a graph is planar is in co-NP.

Proof. The prover gives a K3,3 or K5 subdivision. Each gurantees to exist by Kura-
towski’s Theorem. The verifier checks subdivision.

Deciding if a graph is planar is in P, namely ∃ an algorithm O(|V(G)|2) to do.
How to find K3,3-subdivision?

1. Find a cycle and two connected but internally disjoint crossing paths.

2. Find K3,3 with three pairwise disjoint paths.

3.4. Graph Colouring

What is a generalization of bipartite graph?
We have tripartite, i.e. no edge has both ends in the same parts A, B, C. In gen-

eral, k−partite is the same as k−parts.

Definition 3.30 (Coloring). A coloring of a graph G assigns a color to each vertex
such that adjacent vertices do not receive the same color.

But what colors? Any things you want! So we usually use (positive) integers.

Definition 3.31 (k−coloring). A k−coloring of a graph G is a coloring that was at
most k−colors.

(usually here we use {1, 2, . . . , 10}.
More formally, a k− coloring of G is a map φ : V(G) → {1, . . . , k} such that

∀e = uv ∈ E(G), φ(u) 6= φ(v).

What is the smallest number of colors needed to color a given graph G?

33

MATH 239 Introduction to Graph Theory

Definition 3.32 (Chromatic Number). The chromatic number of a graph G is the
minimum k such that G has a k-coloring, denoted χ(G).

Facts

• χ(Kn) = n, because we need at least n and n suffices.

• χ(Pn) =

{
2 if n ≥ 2

1 if n = 1

• χ(Cn) =

{
2 if even

3 if odd

Lemma 3.33.
χ(G) ≤ 2 ⇐⇒ G is bipartite.

χ(G) ≤ k ⇐⇒ G is k−partite.

Lemma 3.34. If H ⊂ G, then χ(H) ≤ χ(G).

Proof. Let k = χ(G). By definition, G has a k−coloring φ. But then φ|V(H) is a
k−coloring of H.

Definition 3.35 (k−critical). A graph G is k−critical if χ(G) = k and H (G,
χ(H) < k.

Note

• G is 1−critical iff G = K1.

• G is 2−critical iff G = K2.

• G is 3−critical iff G is an odd cycle. (Infinitely many possible odd cycles can
be)

• G is 4−critical iff G is 4−critical. (No structure!)

Question: Is it easy to verify that χ(G) ≤ k, i.e. has a k−coloring? Or not? Or to
decide between? In other words, is deciding G is k−coloring in NP? Co-NP? P?

Theorem 3.36. Deciding G is k−coloring is in NP.

Proof. The prover gives the coloring φ : V(G) → {1, . . . , k}. The verifier checks
∀e = uv ∈ E(G) that φ(u) 6= φ(v). This is O(|E(G)|).

34

Chapter 3

Theorem 3.37. Deciding G is k−coloring is in co-NP if k ≤ 2.

Proof. For k = 0, the prover gives a vertex. For k = 1. the prover gives an edge. For
k = 2, the prover gives an odd cycle.

Actually if for any k ≥ 3, this problem was in co− NP, then every NP prob-
lem is in co-NP, i.e. P = co− NP. (This was conjectured not to be true.)

Theorem 3.38. ∀k ≥ 3, k−coloring decision problem is NP−complete, meaning that if
this problem is in P, then every NP problem is in P.

Bounds on the chromatic number

Definition 3.39 (Clique Number). The clique number of a graph G, denoted ω(G),
is the size of the largest clique. (Clique, i.e. Complete Graph)

Example 3.40. • ω(Kn) = n

• ω(Pn) =

{
2 if n ≥ 2

1 if n = 1

Theorem 3.41. Let G be a graph,

χ(G) ≥ ω(G)

Proof. Let ω(G) = k. By definition, G contains a subgraph H = Kk. By the fact that
χ(Kk) = k. By proposition, since H (G, χ(G) ≥ χ(H) = k.

Definition 3.42 (Maximum Degree of vertex in G). The maximum degree of G,
denoted ∆(G), is defined by

∆(G) := max
v∈V(G)

deg(v)

Theorem 3.43. Let G be a graph.

χ(G) ≤ ∆(G) + 1

Proof. We use induction on the number of vertices of G, denoted n, to prove the
result.

Base Case: If n = 1, it is clear that we cannot have any vertices on a graph with
only one vertex, so the maximum degree of vertex of this graph is 0, i.e. ∆ = 0. We
need exactly 1 colour to colour this only vertex, i.e. χ(G) = 1. χ(G) = 1 ≤ 1 =
0 + 1 = ∆(G) + 1. The base case holds.

35

MATH 239 Introduction to Graph Theory

Inductive Hypothesis: Assume the result holds for every graph with n− 1 ver-
tices for some n ≥ 2.

Inductive Conclusion: Let G be a graph on n vertices. Let v ∈ V(G). Now,
G− v is a graph on n− 1 vertices. By Inductive Hypothesis,

χ(G− v) ≤ ∆(G− v) + 1

This means that the graph G− v can be coloured by at most ∆(G− v) + 1 colours.
Note that degG(n) ≤ δ(G), by definition. The neighbours of v can be coloured

up ≤ ∆(G) colours.
We discuss two cases ∆(G) = ∆(G− v) and ∆(G) < ∆(G− v).
Consider ∆(G) = ∆(G− v).

χ(G− v) ≤ ∆(G− v) + 1 =⇒ χ(G− v) ≤ ∆(G) + 1

This means G− v can be coloured by at most ∆(G) + 1 colours. The neighbours
of v can use the number of colours up ≤ ∆(G). Therefore, there is at least 1 colour
of ∆(G) + 1 colours unused by any neighbours of v. Therefore, for the graph G =
(G − v) + v, we give that unused colour to v. This gives a ∆(G) + 1-colouring of
G. Therefore, χ(G) ≤ ∆(G) + 1.

Consider ∆(G) 6= ∆(G − v). Then, it tells we must have ∆(G − v) < ∆(G).
G = (G− v) + v requires one more colour than G− v. Hence, this gives a ∆(G−
v) + 1 + 1-colouring. Since ∆(G − v) < ∆(G), ∆(G − v) ≤ ∆(G)− 1. ∆(G − v) +
1+ 1 = ∆(G− v) + 2 ≤ ∆(G)− 1+ 2 = ∆(G) + 1. This gives a ∆(G) + 1-colouring
of G. Therefore, χ(G) ≤ ∆(G) + 1.

Corollary 3.44. Let G be a graph.

ω(G) ≤ χ(G) ≤ ∆(G) + 1

Definition 3.45 (d−degenerate). A graph G is d−degenerate if in every subgraph
H of G, ∃v ∈ V(H), such that degH(v) ≤ d.

Theorem 3.46. • G is δ(G)-degenerate.

• G is 0-degenerate iff |E(G)| = 0.

• G is 1-degenerate iff G is a forest.

Remark 3.47. Note that the definition of d−generate is of a co-NP characterization.
The following lemma will give a P characterization of degeneracy.

36

Chapter 3

Theorem 3.48 (NP Characterization of Degeneracy). G is d−degenerate ⇐⇒ ∃ an
ordering v1, . . . , vn of V(G) such that ∀1 ≤ i ≤ n, deg(vi) ≤ d ∈ G[{v1, . . . , vi}].

Proof. “ =⇒ ”: Assume G is d−degenerate. By induction on |V(G)|. If |V(G)| = 1,
v1 is the desired ordering. We may suppose that |V(G)| ≥ 2. Since G is d−degenerate,
∃v ∈ V(G) such that degG(v) ≤ d. Let G′ = G− v. Note that G′ is d−degenerate
because G is. By induction, ∃ an ordering v1, . . . , vn−1 of V(G′), such that ∀1 ≤ i ≤
n− 1, deg(vi) ≤ d ∈ G[{v1, . . . , vi}]. v1, . . . , vn−1, v is a desired ordering of V(G)
since ∀1 ≤ i ≤ n, deg(vi) ≤ d ∈ G[{v1, . . . , vi}].

“ ⇐= ”: Assume we have an ordering v1, . . . , vn of V(G) such that ∀1 ≤
i ≤ n, deg(vi) ≤ d ∈ G[{v1, . . . , vi}]. Suppose for contradiction that G is not
d−degenerate, i.e., ∃ a subgraph H of G such that ∀v ∈ V(H) we have degH(v) >
d. Let j := max{i : vi ∈ V(H)}. By the specification of such ordering, we must
have degG[{v1,...,vj}](vj) ≤ d. Since V(H) ⊂ {v1, . . . , vj}, we find that degH(vj) ≤ d.
A contradiction.

Theorem 3.49. Deciding d−degeneracy is in co−NP.

Proof. The prover gives the verifier a subgraph of H such that degH(v) > d, ∀v ∈
V(G).

Theorem 3.50. Deciding d−degeneracy is in NP.

Proof. The prover gives the verifier an ordering v1, . . . , vn of V(G) such that ∀1 ≤
i ≤ n, deg(vi) ≤ d ∈ G[{v1, . . . , vi}].

Theorem 3.51. If G is d−degenerate, then

χ(G) ≤ d + 1

Proof. By induction on |V(G)|. If |V(G)| = 1, then χ(G) ≤ 1 ≤ d + 1. We may
assume |V(G)| ≥ 2. Since G is d−generate, ∃v ∈ V(G) such that degG(v) ≤ d. Let
G′ = G − v. By induction, ∃ a (d + 1)-coloring φ of G′. Let A = [d + 1]− {φ(u) :
u ∈ N(v)}. Since N(v) is at most d. We have that A 6= ∅. Let φ(v) ∈ A. Now, φ is
a (d + 1)-coloring φ of G.

3.5. Coloring Planar Graph

Question. What is the maximum of χ(G) over all planar graphs of G?
Answer. Four Color Conjecture (around 1852)

Theorem 3.52 (Six Color Theorem). If G is planar, χ(G) ≤ 6.

37

MATH 239 Introduction to Graph Theory

Proof. By the corollary of Euler’s Formula, E(G) ≤ 3|V(G)| − 6. We have that
every planar graph has a vertex with degree ≤ 5. Since a subgraph of a planar
graph is sill planar. It follows that the planar graph is 5-degenerate. By theorem
above, χ(G) ≤ 5 + 1 = 6.

We would like to prove the Five Color Theorem, but degeneracy would not be
enough in a sense that not every planar graph is 4−degenerate.

Example 3.53. ∃ a 5−regular planar graph called Icosahedron.

Theorem 3.54 (Five Color Theorem). If G is planar, then χ(G) ≤ 5.

Proof. By induction on |V(G)|. If |V(G)| = 1, χ(G) = 1. The base case holds.
We may assume |V(G)| ≥ 2. Since G is planar, ∃ v ∈ V(G), degG(v) ≤ 5.
Case 1 : degG(v) ≤ 4
Let G′ = G− v. By induction, G′ has a 5-coloring.
Extend φ to v by letting φ(v) ∈ ([5]− {φ(u) : u ∈ N(v)})
Case 2 : degG(v) = 5
Since G is planar, @K5 subgraph of G. Hence, ∃u 6= w ∈ N(v) such that uw 6∈

E(G). (Why? Otherwise, there would be a K5 as a subgraph!)
Let G′ be obtained as follows (It has a name called contraction.):
Let x be a new vertex.

• V(G′) = (V(G)− {u, v, w}) ∪ {x}

• E(G′) = E(G[V(G)− {u, v, w}]) ∪ {xy : y ∈ N(u) ∪ N(w)}

Claim: G′ is planar.
By induction, G′ has a 5−coloring φ. Let φ(u) = φ(x) and φ(w) = φ(x). Then

let φ(v) ∈ [5]−{φ(z) : z ∈ N(v)}. This will be a 5-coloring of G since ([5]−{φ(z) :
z ∈ N(v)}) 6= ∅ and φ(u) = φ(w).

But why can you be sure it is really a 5−coloring of G?
Claim: φ is a 5−coloring of G.

Proof. Suppose not, that is, ∃ a, b ∈ E(G) such that φ(a) = φ(b). If ab ∈ V(G)−
{u, v, w}, then φ is not a 5−coloring to G′, contrary to assumption. W.l.o.g., assume
a ∈ {u, v, w}.

Case 1: a ∈ {u, w} So we may assume, w.l.o.g., that a = u. If b = v, then φ(a) 6=
φ(b) by definition of phi(v). Otherwise, b ∈ N(u) − {v}, but then φ(x) 6= φ(b),
φ(a) = φ(u) = φ(x) 6= φ(b).

Case 2: a = v, by definition of φ(v), φ(a) 6= φ(b).

38

Chapter 3

39

Chapter 4

Matchings

4.1. Matching

Definition 4.1 (Matching). A matching M in a graph G is a subset of E(G) such
that ∀e, f ∈ E(M), e and f are not incident with the same vertex.

(Silly) Question. Does every graph have a matching?
Answer. Yes! Empty matching.
Question. For a given graph G, what is the size of a maximum matching of G?

Definition 4.2 (Matching Number). The matching number of a graph G, denoted
ν(G), is the size of a largest matching in G.

Definition 4.3 (Perfect Matching). A matching M of G is a perfect matching of G

if |M| = |V(G)|
2

.

Question. Does every graph have a perfect matching?
Answer.

• If |V(G)| is odd, no chance!

• If |E(G)| = 0

• Stars

• |E(G)| < |V(G)|
2

• If G has a component of an odd size

Question.
Is deciding if a graph has a matching of size at least k (for some fixed k) in NP?

Co-NP? Or P?

41

MATH 239 Introduction to Graph Theory

Related Question. (The negation) Is deciding if ν(G) ≤ k − 1 in NP Co-NP?
Or P?

Answer: YES for all!

Theorem 4.4. Deciding if G has a matching of size at least k is in NP, and hence deciding
if ν(G) ≤ k− 1 is in co−NP.

Proof. The prover gives the verifier k edges and the verifier checks no two have a
vertex in common.

4.2. Covering

Definition 4.5 (Cover). A cover of a graph G (often more specifically called a vertex
covering) is a subset of vertices C of V(G) such that @uv ∈ E(G) such that u, v ∈
V(G)− C. (i.e. G− C has no edges. i.e. |E(G− C)| = 0)

(Silly) Question: Does every graph have a cover?
Answer: YES. C = V(G) is a cover.
Question: For a graph G, what is the size of a smallest cover?

Definition 4.6 (Cover(ing) Number). The cover(ing) number of a graph G, denoted
τ(G). (i.e. τ(G) = minimum k of G has a cover of size= k)

Question.
Is deciding if a graph has a cover of size at most k (for some fixed k) in NP?

Co-NP? Or P?
Or, equivalently, is deciding if τ(G) ≥ k + 1 (for some fixed k) in NP? Co-NP?

Or P?

Theorem 4.7. Deciding if G has a cover of size at most k is in NP, and hence deciding if
τ(G) ≥ k + 1 is in co−NP.

Proof. The prover gives a cover. The verifier checks that it is a cover.

Deciding if τ(G) ≥ k + 1 is NP−complete.

4.3. Connection Between Matchings and Covers

Theorem 4.8. If G is a graph,
ν(G) ≤ τ(G)

42

Chapter 4

Proof. Let C be a minimum cover of G, M be a maximum matching of G. Since C is
a cover, for every e = uv ∈ M, at least one of u and v is in C. Since M is a matching,
the edges of M are vertex-disjoint. Hence C has more or the same as |M|-vertices.
Thus, |C| ≥ |M|.

Question.For which graphs G are ν(G) ≤ τ(G)?

Definition 4.9 (M−alternating path). Let M be a matching in graph G. An M-
alternating path is a path whose alternate edge is in M.

Definition 4.10 (Saturated by M). We say a vertex v in G is saturated by M or
M−saturated if v is incident with an edge in M. Otherwise, unsaturated.

Definition 4.11. An M−alternating path P from x to y, where x 6= y, is called
M-augmenting if x and y are unsaturated by M.

Theorem 4.12. An M-augmenting path has edges of an odd size.

Definition 4.13 (Symmetric Difference). Let A and B be sets.

A∆B = (A \ B) ∪ (B \ A)

Theorem 4.14. Let M be a matching in G. ∃ an M−augmenting path in G. Then M is
not a maximum matching.

Proof. Set M′ = E(M)∆E(P). Then, |M′| ≥ |M| and M′ is a matching, so M is not
maximum.

Theorem 4.15 (Lemma). If M is not a maximum matching in G, then ∃ an M−augmenting
path in G.

Proof. Since M is not maximum, ∃ a maximum matching M′ (6= M). Let H =
M∆M′.

Now every component of H has maximum degree at most 2, hence is a path or
a cycle.

If a component of H is a cycle C, then C is an even cycle and |M ∩ E(C)| =
|M′ ∩ E(C)|.

Since M′ is maximum, M is not, |M′| > |M|, and, in fact |H ∩M′| > |H ∩M|.
Hence ∃ a component P of H such that |M′ ∩ E(P)| > |M ∩ E(P)|.

From above, P is not a cycle, hence is a path, and moreover, its first and last
edges are in M′ and not in M. Since P is a component, both ends of path of P are
not in M and hence M−unsaturated. Hence, P is the desired M-augmenting path.

43

MATH 239 Introduction to Graph Theory

Definition 4.16 (Reachable). Let v ∈ V(G) and M be a matching of G. We say a
vertex u is reachable from v in M if ∃ an M−alternating path from v to u.

Definition 4.17 (Reachable Vertices). Let R(v) denote the set of reachable vertices
from v in M.

Theorem 4.18. If v is M-unsaturated and ∃ u ∈ R(v) such that u 6= v and u is
M−unsaturated, then ∃ an M−augmenting path from v to u.

Proof. The M-alternating path from v to u is M-augmenting since u, v are M-unsaturated.

Let G = (A, B) be a bipartite graph, M be a matching of G. Let X0 be the M-
unsaturated vertices in A.

Let Z =
⋃

v∈X0

R(v).

Do XY-construction: we define X := Z ∩ A and Y := Z ∩ B.

Theorem 4.19 (Lemma). If ∃ an M-unsaturated vertex in Y, then ∃ an M-augmenting
path.

Proof. Let u be an M-saturated vertex in Y. Since u ∈ Y ⊆ Z, ∃ a v ∈ X0, such that
u ∈ R(v).

Since u ∈ Y ⊆ B, and v ∈ X0 ⊆ A, we find that u 6= v.
By Proposition, ∃ an M-augmenting path from v to u as desired.

Theorem 4.20 (Corollary). If M is a maximum matching of G, then @ an M-unsaturated
vertex in Y.

Proof. By earlier lemma, if M is maximum, @ an M−augmenting path. By the con-
trapositive of previous lemma, @ an M-unsaturated vertex in Y.

Theorem 4.21 (König’s Theorem). If G is bipartite, then ν(G) = τ(G).

Proof. Let G = (A, B). Define X0, Z, Y as above for M. By corollary, @ an M-unsaturated
vertex in Y.

Claim 1. @ an edge from x to B \Y.

Proof. Suppose not, that is, ∃ ab ∈ E(G) such that a ∈ X, b ∈ B \Y.
Since a ∈ X, ∃v ∈ X0 such that a ∈ R(v). Moreover, ∃ an M-alternating path P

from v to a. If b ∈ V(P), then b ∈ R(v). Hence, b ∈ Y. Contradiction!
So we may assume b 6∈ V(P), ab 6∈ M, given the parity of P. (i.e. ∃c ∈ Y such

that ac ∈ M ∩ E(P))
Hence P = Pb is an M-alternating path from v to b. So b ∈ R(v) and hence in

Y, a contradiction.

44

Chapter 4

Let C := Y ∪ (A \ X). By Claim 1, |E(G − C)| = 0. Since G is bipartite, hence
|E(A)| − |E(B)| = 0. So C is a cover.

Claim 2. |M| = |C|

Proof. Note that every vertex in A \X is M-saturated, because, otherwise, it would
be in X0, and hence in A \ X.

Since M is maximum, every vertex in Y is M-saturated.
Lastly, note @ab ∈ M such that a ∈ A \ X and b ∈ Y. Since b ∈ Y, ∃v ∈ X0 such

that b ∈ R(v) and M-alternating path P from v to b. If a ∈ V(P), then a ∈ R(v) and
hence a ∈ X.

So we may assume a 6∈ V(P), but then P′ = Pa is an M-alternating path from v
to a. So a ∈ R(v) and hence in X. Hence |C| = |M|. But then

ν(G) ≥ |M| = |C| ≥ τ(G)

By proposition of V(G) ≤ τ(G), so ν(G) = τ(G).

45

MATH 239 Introduction to Graph Theory

4.4. Algorithm from König’s Theorem

Let’s recall the XY-construction as follows:

Definition 4.22 (XY-Construction). Given a matching M, G = (A, B).

• Let X0 = M-unsaturated vertices in A.

• Z =
⋃

v∈X0

R(v)

• X = Z ∩ A

• Y = Z ∩ B

Let’s recall the following theorems.

Theorem 4.23. If ∃ an M-unsaturated vertex in Y, then ∃ an M-augmenting path and
hence M is not maximum.

Theorem 4.24. If @ an M-unsaturated vertex in Y, then M is maximum and C = Y ∪
(A \ X) is a cover such that |M| = |C|.

Note. This words because of the following proposition.

Theorem 4.25. If M is a matching and C is a cover of a graph G such that |M| = |C|,
then |M| is a maximum matching and |C| is a minimum cover.

Proof. An easy corollary of earlier proposition: if M is a matching, C is a cover of
G, then |M| ≤ |C|. (Because C has to cover M)

Assume for contradiction that M is not maximum. ∃ a maximum matching M′

with |M′| > |M|, but then |M′| > |C|, a contradiction.
Assume for contradiction that C is not minimum. ∃ a minimum cover C′ such

that |C′| < |C|, but then |C′| < |C| = |M|, i.e. |C′| < |M|, another contradiction.

Question. Is deciding if G has a matching at least k in NP? Obviously true! Give
a matching of size at least k and we check it.

Is it in CO-NP? Is it in P?

Theorem 4.26. If G is bipartite, then this problem is in CO-NP.

Proof. Prover gives verifier a cover of size less than k.
Note. Such thing exists by König’s Theorem.

46

Chapter 4

Note. Algorithm also gives algorithm to find minimum cover. We can convert
this to an algorithm, i.e. given a maximum matching M, find a minimum cover.

Proof. This is a proof of Termination. Note. Initially, |M| = 0. After each iteration
of the WHILE-loop, |M| increases (by 1). Since G is finite, |M| ≤ |V(G)|

2 . There will
also be at most |V(G)|

2 WHILE-iterations. With good implementation, WHILE-loop
is finite.

Proof. This is a proof of Correctness and Running time. Supported by König’s The-
orem. Running time is polynomial, |V(G)|2.

4.5. Hall’s Theorem

Theorem 4.27 (Hall’s Theorem). Let G = (A, B) be a bipartite graph. ∃ a matching of
G saturating A iff ∀ S ⊆ A, |N(S)| ≥ |S|.

Remark 4.28. A matching of G saturating A means that every vertex in A is satu-
rated by the matching.

Definition 4.29 (Hall’s Condition). ∀ S ⊆ A, |N(S)| ≥ |S|

Remark 4.30. • If |A| = |B|, then M saturating A is a perfect matching of G.

• If |B| > |A|, then M saturating A is NOT a perfect matching of G.

• If |A| > |B|, then there does not exist a matching saturating A. (Because it
violates the Hall’s condition at S = A)

Proof. Proof of Hall’s Theorem

Remark 4.31. N(S) here means union neighbourhood, i.e.
⋃

s∈S
N(s)

Proof of “ =⇒ ”:
Let S be a subset of A. Let MS be the set of ends in B where the other end is in

S, i.e.
MS := {u ∈ B : ∃v ∈ S such that uv ∈ M}

Since M is a matching saturating S,

|MS| = |S|

because M saturates A.
However, MS ⊆ N(S). Hence, |N(S)| ≥ |S|.

47

MATH 239 Introduction to Graph Theory

Remark 4.32. This direction of proof is easier than the other.
There is an even easier version of proof by proving its contrapositive, i.e., if

S ⊆ A, such that |N(S)| < |S|, then there is no “hope” to saturate all of S.

Proof of “⇐= ”:
We assume we satisfy Hall’s condition, ∀ S ⊆ A, |N(S)| ≥ |S|, we show there is

matching saturating A (using König’s Theorem, i.e., if G is bipartite, τ(G) = ν(G).)

Remark 4.33. “There is a matching saturating A” is equivalent to “ν(G) = |A|”
(since you can not have any larger matching)

So suppose for contradiction there is NOT a matching saturating A, equiva-
lently, ν(G) < |A|.

By König’s Theorem,
τ(G) = ν(G) < |A|

Let C be a cover of size less than |A|, or ≤ |A| − 1.
Note that A \ C 6= ∅ because |C| < |A|. Let S = A \ C (a clever choice of S).

Since C is a cover and A is edge-less. We find that

N(S) ⊆ C ∩ B

|B ∩ C| ≥ |N(S)| ≥︸︷︷︸
Hall’s Condition

|S|

Yet, |C| = |A ∩ C|+ |B ∩ C| ≥ |A ∩ C|+ |S| = |A ∩ C|+ |A \ C| = |A|.
Now, |C| ≥ |A| contradicts to |C| ≤ |A| − 1.

Corollary 4.34. Let G = (A, B) be bipartite. Then |A| = |B| and Hall’s condition holds
iff G has a perfect matching.

Corollary 4.35. Let G = (A, B) be bipartite. Then G has a perfect matching iff ∀ S ⊆
V(G), |N(S)| ≥ |S|. (Hall’s condition for the whole graph.)

Proof.
|N(S ∩ A)| ≥ |S ∩ A|

|N(S ∩ B)| ≥ |S ∩ B|

|N(S)| ≥ |S|

Corollary 4.36. Let G = (A, B) be bipartite. If there is a number k ≥ 1 such that

48

Chapter 4

• ∀ v ∈ A, deg(v) ≥ k, and

• ∀ v ∈ B, deg(v) ≤ k,

then there is a matching saturating A.

Proof. It suffices to show Hall’s condition holds for S ⊆ A. Let S ⊆ A. Let T =
N(S). Let R = E(S, T) = {uv : u ∈ S, v ∈ T}

Now
∑
u∈S

deg(u) = |R| ≤ ∑
v∈T

deg(v)

Yet by the first condition,

k|S| ≤ ∑
u∈S

deg(u)

and, by the second condition,

∑
v∈S

deg(v) ≤ k|T| = k|N(S)|

Altogether,
k|S| ≤ k|N(S)|

and such k ≥ 1 we find |S| ≤ |N(S)| as desired.

Corollary 4.37. Let G = (A, B) be bipartite. If G is k-regular for k ≥ 1, then there is a
perfect matching of G.

Proof. By a previous theorem, there is a perfect matching saturating A. By sym-
metry, there is a matching saturating B. Hence, |A| = |B|, so we get a perfect
matching.

Corollary 4.38. If G is bipartite k-regular for k ≥ 1 graph, then E(G) can be partitioned
into k perfect matching.

49

	Contents
	Basic Concepts
	What is a Graph?
	Different Kinds of Graphs
	Introduction to Complexity Theory
	Isomorphism
	Basic Terminology
	Our First Lemma

	Fundamental Notions
	Paths and Walks
	Connected Components
	Cut and CO-NP Characterization of Connectedness
	Trees and Forests
	Spanning Subgraph
	Bridges
	CO-NP Characterization of Bipartition
	Minimum Weight Spanning Trees

	Planar Graph
	Planarity
	Euler's Formula
	Kuratowski's Theorem
	Graph Colouring
	Coloring Planar Graph

	Matchings
	Matching
	Covering
	Connection Between Matchings and Covers
	Algorithm from König's Theorem
	Hall's Theorem

